Using pot-magnets to enable stable and scalable electromagnetic tactile displays


We present the design, fabrication, characterization and psychophysical testing of a scalable haptic display based on electromagnetic (EM) actuators. The display consists of a 4×4 array of taxels, each of which can be in a raised or a lowered position, thus generating different static configurations. One of the most challenging aspects when designing densely-packed arrays of EM actuators is obtaining large actuation forces while simultaneously generating only weak interactions between neighboring taxels. In this work we introduce a lightweight and effective magnetic shielding architecture. The moving part of each taxel is a cylindrical permanent magnet embedded in a ferromagnetic pot, forming a pot-magnet. An array of planar microcoils attracts or repels each pot-magnet. This configuration reduces the interaction between neighboring magnets by more than one order of magnitude, while the coil/magnet interaction is only reduced by 10%. For 4 mm diameter pins on an 8 mm pitch, we obtained displacements of 0.55 mm and forces of 40 mN using 1.7 W. We measured the accuracy of human perception under two actuation configurations which differed in the force vs. displacement curve. We obtained 91% of correct answers in pulling configuration and 100% in pushing configuration.
Published in: IEEE Transactions on Haptics ( Volume: PP, Issue: 99 )
DOI: 10.1109/TOH.2016.2591951